Cyclic Pricing by a Durable Goods Monopolist:
Corrigendum

César L. Guerrero-Luchtenberg
Fecha de recepción: 2 de abril de 2002; fecha de aceptación: 2 de mayo de 2002.

Abstract: In this paper we make a new analysis of the model presented in Conlisk, Gerstner and Sobel (1984). They propose a model in discrete time, such that at each period a new cohort of agents enters the market —each cohort is composed by two types of agents, high value and low value agents— and a monopolist offering a durable good. They argue that in this model the monopolist charge a cyclic price path as a subgame perfect equilibrium. Instead of this, we show that either the monopolist charge a single price forever as a subgame perfect equilibrium or a subgame perfect equilibrium does not exist.

Keywords: Durable goods, monopolist, heterogenous agents, subgame perfect equilibrium.

Resumen: En este trabajo hacemos un nuevo análisis del modelo presentado en Conlisk, Gerstner y Sobel (1984). Ellos proponen un modelo en tiempo discreto, tal que en cada periodo entra una nueva generación de agentes —cada generación está compuesta de dos tipos de consumidores, los de valoración alta y de valoración baja— y un monopolista ofreciendo un bien durable. Ellos argumentan que el monopolista cargará una senda de precios cíclica como un equilibrio perfecto en subjuegos. En vez de esto, nosotros probamos que o bien el monopolista carga un precio fijo como equilibrio perfecto en subjuegos, o bien no existen equilibrios perfectos en subjuegos.

Palabras Clave: Bienes durables, monopolista, agentes heterogéneos, equilibrios perfectos en subjuegos.
I. Introduction

In the paper by Conlisk, Gerstner and Sobel (1984) a very nice model of a monopolist offering a durable good where there are heterogenous agents is presented, as an example of price discrimination. Although at first glance, indeed, the outcome should be a cyclic path strategy from the monopolist, we show that without further assumptions, this is not the case. Our note, therefore, opens the issue again, leaving for future research to find conditions under which a cyclic pricing strategy as subgame perfect equilibrium is found.

The rest of the note is as follows. Section 2 describes the model. In section 3 we present our theorem 1 and the proofs. Finally, section 4 presents the conclusions.

II. The model

Time is discrete, and there is in the economy a unique durable good. All agents are infinitely lived, fully rational and fully informed. On the supply side, there is only one seller, a monopolist, choosing price nonstochastically each period so as to maximize discounted present value with a discount factor $0 < \rho < 1$. It is assumed a constant unit cost so, without loss of generality, is set to be zero. The good cannot be rented, and the monopolist cannot make binding commitments about future prices, and thus only subgame perfect equilibrium strategies will be considered ‘equilibrium strategies.’ On the demand side, at each period N consumers enter the market. A fraction α of them value the product (the instantaneous value) at b_1 monetary units per period, and the remaining fraction $1-\alpha$ value the product at b_2 monetary units per period, with $b_1 > b_2 > 0$ and $0 < \alpha < 1$. They value strategies as a present value calculated as a discounted sum of all future instantaneous values, with a common discount factor $0 < \beta < 1$. Once a consumer buys the good, he leaves the market. On the other hand, he stays in the market 2 until he buys the good. All consumers are price-takers and buy only a unit of the good. Finally, in case of ties between acting immediately and acting later, an agent acts (prefers) immediately.
III. Theorem and proofs

First of all, we note that if the monopolist is willing to charge a cyclic path, the path is of the form:

\[p_j = (1 - \beta^n) V_1 + \beta^n V_2 \] \hspace{1cm} (1)

for \(j = 1, \ldots, n \), for some \(n \) (where \(V_i = \frac{h_i}{1 - \rho} \), with \(i = 1, 2 \)), because it exploits at the maximum possible the total consumers' surplus.\(^1\)

With this fact and notation stated, we can formalize our

Theorem 1 If \(\beta = \rho \), then

a) If \(\alpha b_1 > b_2 \) and we do not consider the no-commitment assumption, then there is a Nash equilibrium whose strategies are: The monopolist charges \(V_1 \) forever, high consumers buy at the moment they enter the market and low consumers do not buy at all. This Nash equilibrium is not a subgame perfect equilibrium.

On the other hand, even if we assume the no-commitment hypothesis, then for no \(n \geq 1 \), can the prices given by (1) a subgame perfect equilibrium be.

b) If \(\alpha b_1 \leq b_2 \), then there is a unique Nash equilibrium which is also a subgame perfect equilibrium, whose strategies are: The monopolist charges \(V_2 \) forever, and high and low consumers buy at the moment they enter the market.

Proofs

a) We denote by \(\pi(V_1) \) the present value of the monopolist's stream from time 1 to infinity if \(V_1 \) is charged forever. We have

\[\pi(V_1) = \frac{NaV_1}{1 - \rho}. \]

The point then is to compare \(\pi(V_1) \) with the present value of a cyclic path of the form (1).

In order to do this, we denote by \(\pi(n, 1, \beta, \rho) \) the present value of the monopolist's total stream from time 1 to infinity if prices \(\{p_j\} \) as given in (1) are charged forever for some \(n \). We have

\[\pi(n, 1, \beta, \rho) = \frac{N}{1 - \rho^n} \left\{ \alpha \left[\sum_{j=1}^{n} ((1 - \beta^n V_1) + \beta^n V_2) \rho^{j-1} \right] + nV_2(1 - \alpha) \rho^{n-1} \right\}. \]

\(^1\) See Conlisk et al. (1984) for a proof.
The term
\[\alpha N \left[\sum_{j=1}^{n} ((1 - \beta^{n-j})V_1 + \beta^{n-j}V_2)\rho^{j-1} \right] + nV_2(1 - \alpha)\rho^{n-1} \]

is denoted by \(R(n, 1, \beta, \rho) \), which is the present value of the monopolist’s profit stream as calculated from the first period to the \(n \)th period of the cycle. Therefore

\[\pi(n, 1, \beta, \rho) = \frac{1}{1 - \rho^n} R(n, 1, \beta, \rho). \]

Rearranging,

\[\pi(n, 1, \beta, \rho) = \frac{NaV_1}{1 - \rho} + N \frac{\{nV_2(1 - \alpha)\rho^{n-1} - \alpha(V_1 - V_2)\left[1 - \frac{(\frac{\alpha}{\beta})^n}{1 - \frac{(\frac{\alpha}{\beta})}{\beta}}\right]\beta^{n-1}\}}{1 - \rho^n} \]

We demonstrate this equality in the Appendix. Now, if \(\beta = \rho \); we have

\[\pi(n, 1, \rho, \rho) = \frac{NaV_1}{1 - \rho} + \frac{N}{1 - \rho^n} \{nV_2(1 - \alpha)\rho^{n-1} - n\alpha(V_1 - V_2)\rho^{n-1}\}, \]

which results in

\[\pi(n, 1, \rho, \rho) = \frac{NaV_1}{1 - \rho} + \frac{nN\rho^{n-1}}{1 - \rho^n} \{V_2 - \alpha V_1\}. \] (3)

The expression (3) is the key element for the analysis of the model.

Clearly, the monopolist would only choose cyclic prices at time one if \(\pi(n, 1, \rho, \rho) \geq \pi(V_1) \), that is, only if \(V_2 \geq \alpha V_1 \); therefore, if \(V_2 < \alpha V_1 \) he would never choose to charge prices as given in (1) at time one.

Thus, if we do not consider the no-commitment assumption, we have that the strategy charging \(V_1 \) forever is the best strategy at this time. Indeed, at time one the monopolist has two possibilities: To charge \(V_1 \) forever or not; now, if he does not decide to charge \(V_1 \) forever, in principle, he would consider the benefits given by \(\pi(n, 1, \rho, \rho) \) for some \(n \) (the largest of those, if it exists), due to that the consumer’s surplus is exploited at the maximum possible (high value consumers would never buy today at a price equal to \(V_1 \) if they expect a sale sooner or later), but since \(\pi(n, 1, \rho, \rho) < \pi(V_1) \), for all \(n \), the best the monopolist can do is to charge at time one \(V_1 \) forever. Therefore, to charge \(V_1 \) forever is the unique Nash equilibrium. On
the other hand, as time goes on the accumulation of low value consumers will make it profitable for the monopolist to charge V_2 sooner of later. This implies that when $V_2 < \alpha V_1$, a subgame perfect equilibrium does not exist, if we do not consider the no-commitment assumption.

Now, let's assume that to charge V_1 forever is ruled out by assumption. That is, we take into account the no-commitment assumption.

In order to prove our statement, it suffices to note that for any $n \geq 1$, we have $\pi(n+1, \rho, \rho) > \pi(n, \rho, \rho)$, thus no n can a subgame perfect equilibrium be. We can explicitly prove this using our function f defined in (b) and noting that f' in (4) is always negative.

It is very important to notice, however, that this reasoning does not depend on the form of the no-commitment assumption. It is the consequence way that the monopolist and the consumers evaluate their decisions (their pay-off functions), a process that cannot be modified by the no-commitment assumption, without further assumptions. That is, to obtain a subgame perfect equilibrium in this case, we must modify the behavior of the consumers and the monopolist.

This concludes the proof of (a).

b) We have to prove that, if $b_2 > ab_1$, then the price strategy $p_t = V_2$ for all $t \geq 1$ and all consumers buying the good at the moment they enter the market, is the only one subgame perfect equilibrium in this model. In particular, this implies that for no $n > 1$, can the prices given by (1) a subgame perfect equilibrium be.

Suppose then that $b_2 > ab_1$ and $\rho < 1$. We recall that the present value benefits at time one if prices as in (1) for some n are charged forever, are given by:

$$\pi(n, 1, \rho, \rho) = \frac{NaV_1}{1 - \rho} + \frac{nN\rho^{n-1}}{1 - \rho^n} \{V_2 - \alpha V_1\}.$$

Notice that $\pi(1, 1, \rho, \rho) = \frac{NV_2}{\rho}$, and therefore, to charge V_2 forever is exactly the same as charging prices given by (1) with n equals 1 forever. Now, we consider the function $f(x) = \frac{\rho^x}{(1 - \rho^x)^2} [1 - \rho^x + \ln \rho^x]$. Then,

$$f'(x) = \frac{\rho^x}{(1 - \rho^x)^2} [1 - \rho^x + \ln \rho^x], \quad (4)$$

435
and note that \(f'(x) < 0 \), if and only if \(1 + \ln \rho^* < \rho^* \). Now, it is straightforward to prove that \(1 + \ln \rho^* < \rho^* \) for all \(x > 0 \) and \(1 + \ln \rho^* = \rho^* \) if and only if \(x = 0 \) or \(\rho = 1 \).

Therefore, we have that \(f'(x) < 0 \) for all \(x > 0 \) and hence, we have that

\[
\pi(1,1, \rho, \rho) \geq \pi(n, 1, \rho, \rho)
\]

for all \(n \geq 1 \) and

\[
\pi(1,1, \rho, \rho) > \pi(n, 1, \rho, \rho) \tag{5}
\]

if \(n > 1 \).

Take any time in the game, and the corresponding subgame. Notice that any subgame, with the strategy charging \(V_2 \) forever, is identical to the game at time one because there are no low consumers accumulated. Therefore, if we show that to charge \(V_2 \) forever is the unique best strategy at time one, it will be the best (the only one) at any subgame, and our claim will be proven.

Now, at time one, the monopolist can decide to charge \(V_2 \) forever or not. If he charges \(V_2 \) forever he gets \(\frac{N V_2}{1-\rho} \), and if he charges \(V_1 \) forever he gets

\[
\frac{N V_1}{1-\rho} > \frac{N_0 V_1}{1-\rho}.
\]

Therefore to charge \(V_2 \) forever dominates the other strategy. On the other hand, if the monopolist does not decide to charge \(V_1 \) forever, \textit{a priori}, the best he can do is to charge a cyclic price strategy given by (1) with the appropriate \(n \). Indeed, if he does not charge \(V_1 \) forever, he would plan to make a sale sooner or later, and in this case, he would charge a cyclic strategy forever with \(n \) (because it exploits the consumers’ surplus at the maximum possible) such that generates the largest \(\pi(n,1, \rho, \rho) \) among all \(n \), that is \(n = 1 \), due to that \(\pi(1,1, \rho, \rho) > \pi(n, 1, \rho, \rho) \) for all \(n \). Thus, to charge \(V_2 \) forever is the best strategy at time one (if one would prefer a more explicit argument, it is also easy to show, by means of a direct comparison, that to charge \(V_2 \) forever dominates not only those strategies charging the same cyclic path forever, but also those in which the monopolist consider to charge different cycles one after the other).

The uniqueness of this equilibrium follows directly from the strict inequality (5).
Now we consider the case when

\[V_2 - \alpha V_1 = 0. \]

First, the fact that to charge \(V_2 \) forever is a subgame perfect equilibrium. The proof of this is analogous to the one above and hence is omitted.

Now we will prove that given any \(n > 1 \), then prices \(\{p_i(n)\}_{i=1}^n \) are not subgame perfect equilibrium.

To this end, we will show that for any \(k \in \{0, 1, 2, \ldots \} \) and any \(t \) of the form \(t = kn + j \) with \(j \) satisfying \(2 \leq j \leq n \), there exists a strategy that from \(j \) henceforth dominates the original one.

Therefore, take one \(t \) as defined above, that is, \(t \) is any period that is not a starting period of a cycle. Let's consider the benefits that the monopolist receives if he does not change the strategy decided at time one from time \(t \) henceforth, that is, if he charges \(p_i(n) \) at time \(kn + j \), \(p_{i+1}(n) \) at time \(kn + j + 1 \), and so on. We denote by \(\pi_{kn+j}(n, 1, \rho, \rho) \) the present value of these benefits. Then

\[
\pi_{kn+j}(n, 1, \rho, \rho) = \rho^{1-j} \left[R(n, 1, \rho, \rho) - \alpha N \sum_{i=1}^{j-1} p_i(n) \rho^{l-1} \right] + \rho^{n-j+1} \frac{R(n, 1, \rho, \rho)}{(1-\rho^n)}. \tag{6}
\]

We prove this in the Appendix.

Rearranging this last equality, we have

\[
\pi_{kn+j}(n, 1, \rho, \rho) = \rho^{1-j} \left[\frac{R(n, 1, \rho, \rho)}{(1-\rho^n)} - \alpha N \sum_{i=1}^{j-1} p_i(n) \rho^{l-1} \right]. \tag{7}
\]

Now consider an alternative strategy as follows: To start again from \(t \) a new period cycle \(\{p_i(\hat{n})\}_{i=1}^\hat{n} \) for some \(\hat{n} \).

Then, in order to prove our affirmation, we compute the present value of the benefits for the monopolist if from \(t \) he decides to charge a new cycle \(\{p_i(\hat{n})\}_{i=1}^\hat{n} \) for some \(\hat{n} \). Denoting by \(\pi_{\hat{n}} \) its benefits, we have

\[
\pi_{\hat{n}} = \frac{R(\hat{n}, 1, \rho, \rho)}{(1-\rho^n)} + (j-1)N(1-\alpha)V_2\rho^{\hat{n}-1}. \tag{8}
\]

We demonstrate this in the Appendix.
Recall that
\[
\frac{R(n,1,\rho,\rho)}{1-\rho^n} = \frac{N\alpha V}{1-\rho}
\]
for any \(\hat{n} \), so we take \(\hat{n} = 1 \) in order to obtain the best alternative at this time. Therefore, the present value of the benefits with \(\hat{n} = 1 \) is
\[
\pi_{aj} = \frac{N\alpha V}{1-\rho} + (j-1)N(1-\alpha)V_2
\]

Now we will show that \(\pi_{aj} > \pi_{n\to j}(n, 1, \rho, \rho) \) and therefore the proof of claim (b) will be completed.
We have \(\pi_{aj} > \pi_{n\to j}(n, 1, \rho, \rho) \) if and only if
\[
\frac{N\alpha V}{1-\rho} + (j-1)N(1-\alpha)V_2 > \rho^{1-j} \left[\frac{R(n,1,\rho,\rho)}{1-\rho^n} - N\alpha \sum_{l=1}^{j-1} p_l(n)\rho^{l-1} \right]
\]
(9)
Recall again that
\[
\frac{R(n,1,\rho,\rho)}{1-\rho^n} = \frac{N\alpha V}{1-\rho}.
\]
Hence, replacing, the inequality (9) is equivalent to
\[
\frac{N\alpha V}{1-\rho} + (j-1)N(1-\alpha)V_2 > \rho^{1-j} \left[\frac{N\alpha V}{1-\rho} - N\alpha \sum_{l=1}^{j-1} p_l(n)\rho^{l-1} \right].
\]
and thus, equivalent to
\[
N\alpha \sum_{l=1}^{j-1} p_l(n)\rho^{l-1} + \rho^{j-1}(j-1)N(1-\alpha)V_2 > N\alpha V_1 \left(\frac{1-\rho^{j-1}}{1-\rho} \right). (10)
\]
Now, taking the left side of this inequality
\[
N\alpha \sum_{l=1}^{j-1} p_l(n)\rho^{l-1} + \rho^{j-1}(j-1)N(1-\alpha)V_2,
\]
we have that
\[
N\alpha \sum_{l=1}^{j-1} p_l(n)\rho^{l-1} + \rho^{j-1}(j-1)N(1-\alpha)V_2 > \]
\[
N\alpha \sum_{l=1}^{j-1} p_l(n)\rho^{l-1} + \rho^{j-2}(j-1)N(1-\alpha)V_2
\]
(11)
because \(0 < \rho < 1 \). Now, observing that if we denote by \(\{p_l(j-1)\}_{i=1}^{j-1} \) the prices given by (1) with \(j-1 \) as the period length, we have that

\[
p_l(n) > p_l(j - 1) \text{ for all } l = 1, \ldots, j - 1.
\]

(12)

because \(j-1 < n \). We demonstrate this in the Appendix.

Therefore, taking the right side of (11), we have

\[
N\alpha \sum_{l=1}^{j-1} p_l(n)\rho^{l-1} + (j - 1)N(1 - \alpha)V_2\rho^{j-2} >
\]

\[
N\alpha \sum_{l=1}^{j-1} p_l(j - 1)\rho^{l-1} + (j - 1)N(1 - \alpha)V_2\rho^{j-2}.
\]

and the right side of this last equality is exactly

\[
R(j - 1, \rho, \rho) = N\alpha V_1 \left(\frac{1 - \rho^{j-1}}{1 - \rho} \right),
\]

that is, we have shown that

\[
N\alpha \sum_{l=1}^{j-1} p_l(n)\rho^{l-1} + (j - 1)N(1 - \alpha)V_2\rho^{j-2} > N\alpha V_1 \left(\frac{1 - \rho^{j-1}}{1 - \rho} \right). \quad (13)
\]

Now, recalling the inequality (11), we have

\[
N\alpha \sum_{l=1}^{j-1} p_l(n)\rho^{l-1} + (j - 1)N(1 - \alpha)V_2\rho^{j-1} >
\]

\[
N\alpha \sum_{l=1}^{j-1} p_l(n)\rho^{l-1} + (j - 1)N(1 - \alpha)V_2\rho^{j-2} >
\]

\[
N\alpha V_1 \left(\frac{1 - \rho^{j-1}}{1 - \rho} \right),
\]

and therefore (the last inequality is due to (13)),

\[
N\alpha \sum_{l=1}^{j-1} p_l(n)\rho^{l-1} + (j - 1)N(1 - \alpha)V_2\rho^{j-1} >
\]

\[
N\alpha V_1 \left(\frac{1 - \rho^{j-1}}{1 - \rho} \right),
\]

439
which is exactly the inequality (10), and hence we have proven that
\[\pi_{\omega} > \pi_{\omega, n} (n, 1, \rho, \rho) . \]
This concludes the proof of claim (b).

IV. Conclusions

Theorem 1 is a complete characterization of the possible equilibrium strategies in the model when \(\beta = \rho \).

Surprisingly enough, and in sharp contrast to the intuitions about the set up of the model, the conclusion is that in this model, when \(\beta = \rho \), there is no cyclic optimal pricing strategy by the monopolist. We stress here, once again, that this result does not depend on the precise way that we state the no-commitment assumption. To modify the result, we must modify the pay-off functions.

At first glance, our conclusions may appear paradoxical. \textit{A priori}, it is strange not to obtain cyclic behavior from the monopolist. In relation to this paradoxical fact we have to divide the analysis into two principal cases: When \(\alpha V_1 < V_2 \) and when \(\alpha V_1 > V_2 \).

First, let’s examine the case when \(\alpha V_1 \leq V_2 \). Here we do not think that the result is necessarily paradoxical. Although it depends heavily on the way that the model describes the behavior of the consumers, that is, it depends heavily on the exact form of the prices, we conjecture that if we would model the consumers’ behavior in another way, we would obtain the same result. This intuition is due to the fact that it is never profitable for the monopolist to charge a higher price than \(V_2 \). That is, there is no trade off between charging higher prices than \(V_2 \) and accumulating low value agents some periods to receive the gains of their purchases later, and to charge \(V_2 \) every period: It is always better to charge \(V_2 \) forever. This intuition is also backed by the fact that this equilibrium is the unique subgame perfect equilibrium in this model.

Second, is the case when \(\alpha V_1 > V_2 \). In this case, the result is not the one that people would anticipate in real life or, more precisely, cyclic behavior should be the result of a good model. Indeed, in a representative model, we would expect the monopolist to charge \(V_1 \) at some times cyclically and optimally. The intuition here is quite
clear: The best the monopolist can do at the outset is to charge \(V_1 \) forever, but the accumulation of low value agents makes it lucrative for him to drop the price sooner or later. A good model should support this intuition as a subgame perfect equilibrium.

This result then, more than being paradoxical, reflects a weakness of the model.

Appendix

1) Proof of (2):

By definition of prices in (1), we have

\[
\pi(n, 1, \beta, \rho) = \frac{N}{1-\rho^{n}} \left\{ \alpha \left[\sum_{j=1}^{n} \left((1-\beta^{n-j})V_1 + \beta^{n-j}V_2 \right) \rho^{j-1} \right] + \frac{nV_2}{n(1-\alpha)} \beta^{n-1} \right\},
\]

so

\[
\pi(n, 1, \beta, \rho) = \frac{N}{1-\rho^{n}} \left\{ \alpha \sum_{j=1}^{n} V_1 \rho^{j-1} - \alpha \sum_{j=1}^{n} \beta^{n-j} V_1 + \alpha \sum_{j=1}^{n} \beta^{n-j} V_2 \rho^{j-1} + nV_2(1-\alpha)\beta^{n-1} \right\},
\]

then

\[
\pi(n, 1, \beta, \rho) = \frac{N}{1-\rho^{n}} \left\{ \alpha V_1 \frac{1-\rho^n}{1-\rho} + nV_2(1-\alpha)\beta^{n-1} - \alpha \left[V_1 - V_2 \right] \beta^{n-1} \sum_{j=0}^{n-1} \left(\frac{n}{\beta} \right)^j \right\},
\]

hence

\[
\pi(n, 1, \beta, \rho) = \frac{NaV_1}{1-\rho^n} + \frac{NnV_2}{1-\rho^n}(1-\alpha)\beta^{n-1} - \frac{Na}{1-\rho^n} \left[V_1 - V_2 \right] \left[\frac{1-(\frac{n}{\beta})^n}{1-(\frac{n}{\beta})} \right] \beta^{n-1},
\]

which is precisely the equation (2).

2. Proof of (6):

Take any \(k \in \{0, 1, 2\ldots \} \) and any \(t \) of the form \(t = nk+j \) with \(j \) satisfying \(2 < j < n \). Now let \(\{ p_l(n) \} \) the prices given by (1). Therefore

\[
\pi_{kn+j}(n, 1, \rho, \rho) = \alpha N \left[p_j(n) + p_{j+1}(n) \rho + p_{j+2}(n) \rho^2 + \ldots + V_2 \rho^{n-j} \right] + (1-\alpha)NnV_2\rho^n + \left[\alpha N(p_1(n))\rho^{n-j} + \ldots + V_2 \rho^{2n-j} \right] + (1-\alpha)nNV_2\rho^{2n-j},
\]

\[
+ \sum_{i=1}^{\infty} \rho^{ni} \left[\alpha N(p_i(n))\rho^{n-j+1} + \ldots + V_2 \rho^{2n-j} \right] + (1-\alpha)nNV_2\rho^{2n-j},
\]
\[\pi_{kn+j}(n, 1, \rho, \rho) = \alpha N \left[p_j(n) + p_{j+1}(n)\rho + p_{j+2}(n)\rho^2 + \ldots + V_2\rho^{n-j} \right] \\
+ (1 - \alpha)Nv_2\rho^{n-j} + \frac{\rho^{n-j+1}}{1 - \rho^{n}} R(n, 1, \rho, \rho) \] (14)

Now, observe that
\[
\alpha N \left[p_j(n) + p_{j+1}(n)\rho + p_{j+2}(n)\rho^2 + \ldots + V_2\rho^{n-j} \right] + (1 - \alpha)Nv_2\rho^{n-j} = \\
\rho^{n-j} \left[R(n, 1, \rho, \rho) - \sum_{i=1}^{j-1} p_i(n)\rho^{i-1} \right],
\]
therefore the equation (14) becomes
\[
\pi_{kn+j}(n, 1, \rho, \rho) = \rho^{n-j} \left[R(n, 1, \rho, \rho) - \sum_{i=1}^{j-1} p_i(n)\rho^{i-1} \right] + \frac{\rho^{n-j+1}}{1 - \rho^{n}} R(n, 1, \rho, \rho),
\]
which is precisely the equation (5).

3. Proof of (8):
We have to prove that
\[
\pi_{\alpha j} = \frac{R(\hat{n}, 1, \rho, \rho)}{(1 - \rho^{\hat{n}})} + (j - 1)N(1 - \alpha)V_2\rho^{\hat{n}-1}.
\]

Notice that until the period \(j\); there are \(j-1\) generations of low value consumers accumulated. Now if the monopolist starts a new cycle with period \(\hat{n}\), then \(\hat{n}-1\) periods later he will earn the present value of those \(j-1\) generations accumulated before he started the new period, that is
\[
(j - 1)N(1 - \alpha)V_2\rho^{\hat{n}-1},
\]
plus the normal present value of the new period cycle, that is
\[
\frac{R(\hat{n}, 1, \rho, \rho)}{(1 - \rho^{\hat{n}})},
\]
therefore the present value from \(j\) is
\[
\frac{R(\hat{n}, 1, \rho, \rho)}{(1 - \rho^{\hat{n}})} + (j - 1)N(1 - \alpha)V_2\rho^{\hat{n}-1},
\]
and thus we have proven the statement.

4. Proof of (12):
By definition,
\[
p_i(n) = (1 - \beta^{n-i})V_1 + \beta^{n-i}V_2
\]
for all \(l \leq n \). Now, consider the function

\[
h(x) = \frac{1}{\beta^{x+l}} V_1 + \beta x V_2
\]

for \(x \geq 0 \). We have

\[
h'(x) = (V_2 - V_1) \beta^{x+l} \ln \beta.
\]

Therefore, we have that \(h'(x) > 0 \) for all \(x \geq 0 \). This concludes the proof of (11).

References
